Disjoint Multi-task Learning between Heterogeneous Human-centric Tasks

نویسندگان

  • Dong-Jin Kim
  • Jinsoo Choi
  • Tae-Hyun Oh
  • Youngjin Yoon
  • In-So Kweon
چکیده

Human behavior understanding is arguably one of the most important mid-level components in artificial intelligence. In order to efficiently make use of data, multi-task learning has been studied in diverse computer vision tasks including human behavior understanding. However, multitask learning relies on task specific datasets and constructing such datasets can be cumbersome. It requires huge amounts of data, labeling efforts, statistical consideration etc. In this paper, we leverage existing single-task datasets for human action classification and captioning data for efficient human behavior learning. Since the data in each dataset has respective heterogeneous annotations, traditional multi-task learning is not effective in this scenario. To this end, we propose a novel alternating directional optimization method to efficiently learn from the heterogeneous data. We demonstrate the effectiveness of our model and show performance improvements on both classification and sentence retrieval tasks in comparison to the models trained on each of the single-task datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heterogeneous Transfer Learning with RBMs

A common approach in machine learning is to use a large amount of labeled data to train a model. Usually this model can then only be used to classify data in the same feature space. However, labeled data is often expensive to obtain. A number of strategies have been developed by the machine learning community in recent years to address this problem, including: semi-supervised learning, domain a...

متن کامل

Exploiting High-Order Information in Heterogeneous Multi-Task Feature Learning

Multi-task feature learning (MTFL) aims to improve the generalization performance of multiple related learning tasks by sharing features between them. It has been successfully applied to many pattern recognition and biometric prediction problems. Most of current MTFL methods assume that different tasks exploit the same feature representation, and thus are not applicable to the scenarios where d...

متن کامل

Multi-task Multi-domain Representation Learning for Sequence Tagging

Many domain adaptation approaches rely on learning cross domain shared representations to transfer the knowledge learned in one domain to other domains. Traditional domain adaptation only considers adapting for one task. In this paper, we explore multi-task representation learning under the domain adaptation scenario. We propose a neural network framework that supports domain adaptation for mul...

متن کامل

Multi-task Domain Adaptation for Sequence Tagging

Many domain adaptation approaches rely on learning cross domain shared representations to transfer the knowledge learned in one domain to other domains. Traditional domain adaptation only considers adapting for one task. In this paper, we explore multi-task representation learning under the domain adaptation scenario. We propose a neural network framework that supports domain adaptation for mul...

متن کامل

Memory-centric network-on-chip for power efficient execution of task-level pipeline on a multi-core processor

For flexible mapping of various task-level pipelines on a multi-core processor, the authors proposed the memory-centric network-on-chip (NoC). The memory-centric NoC manages producer–consumer data transactions between the tasks in the case of task-level pipelines are distributed over multiple processing cores. Since the memory-centric NoC manages the data transactions, it relieves burden of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.04962  شماره 

صفحات  -

تاریخ انتشار 2018